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Abstract: Spider monkey optimization (SMO) algorithm is a new swarm intelligence optimization algorithm proposed in recent years. It 

simulates the foraging behavior of spider monkeys which have fission-fusion social structure (FFSS). In this paper, a modified spider 

monkey optimization algorithm is proposed. The self-adaptive inertia weight is introduced in the local leader phase to enhance the 

self-learning ability of the spider monkey. According to the function value of an individual, the distance from the optimal value is 

determined, so the inertia weight related the individual function value is added to strength the global search ability or local search ability. 

The proposed algorithm is tested on 20 benchmark problems and compared with the original SMO and the hybrid algorithm SMOGA and 

GASMO. The numerical results show that the proposed algorithm has a certain degree of improvement in convergence accuracy and 

convergence speed. The performance of the proposed algorithm is also inspected by two classical engineering design problems.  

 

Keywords: Swarm intelligence optimization, Spider monkey optimization, Self-adaptive inertia weight, Numerical experiment.  

 

1. Introduction 
 

Nowadays, more and more researchers pay attention to nature 

inspired algorithms (NIA) which can solve the complex 

optimization problems in the real world. NIA is composed of 

evolutionary algorithms and swarm intelligence algorithms. 

Evolutionary algorithms use mechanisms motivated by 

biological evolution, like selection, crossover, mutation, 

etc[1]. such as genetic algorithm (GA)[2], differential 

evolution (DE)[3] and so on. Swarm intelligence algorithms 

imitate the social behaviour of biology in the real world such 

as particle swarm optimization (PSO)[4], grey wolf 

optimization (GWO)[5], artificial bee colony optimization 

(ABC)[6] and so on. These algorithms have widely 

applications in real life. 

 

The spider monkey optimization (SMO) algorithm[7] is a 

swarm intelligence algorithm which proposed by J.C. Bansal 

et al. in 2014. SMO simulates the foraging behavior of spider 

monkeys, which have been classified as the animals with 

fission-fusion social structure (FFSS). When the female 

spider (global leader) does not get enough food for the group, 

she divides the group into sub-groups to search food to reduce 

the foraging competition among group members. Although 

this algorithm has not been proposed for a long time, it has 

been studied by many scholars. Kumar et al. introduce a 

self-adaptive spider monkey optimization (SaSMO)[8], in 

which the step size in position updating formula in local 

leader phase and local leader decision phase was updated 

using self-adaptive strategy. The algorithm performed better 

in terms of reliability, efficiency and accuracy. Gupta et al. 

proposed the QA-based spider monkey optimization 

(QASMO)[9], in which the quadratic approximation operator 

was incorporated in SMO to enhance the local search 

capability. Agrawal et al. introduced two hybrid algorithms of 

genetic algorithm (GA) and spider monkey optimization 

algorithm (SMO)[10]. Their results indicated that the 

effective hybridizations had the potential to improve the 

performances of both GA and SMO. As the principle of SMO 

is simple and the parameters in SMO are few, SMO has been 

applied to solve electromagnetic problems[11], economic 

dispatch problems[12], optimal design of PIDA controller[13] 

and so on. However, SMO has the same disadvantages as that 

in other population-based algorithms, such as low 

convergence accuracy and easy to fall into local optimization. 

 

A modified version of SMO, called spider monkey 

optimization algorithm based on self-adaptive inertia weight 

(SAWSMO), is proposed. To enhance the spider monkeys’ 

self-learning ability, the self-adaptive inertia weight inspired 

by PSO is added to the position update formula in local leader 

phase. The proposed algorithm SAWSMO is tested on 20 

benchmark problems from[10] and the numerical results are 

compared with those of the original SMO and two modified 

SMO algorithms SMOGA and GASMO. The performance of 

the proposed algorithm SAWSMO is inspected by two 

classical engineering design problems. 

 

The rest of the paper is organized as follows: Section 2 

introduces the original spider monkey optimization algorithm. 

The details of the proposed algorithm SAWSMO is described 

in section 3. Section 4 includes numerical experiment. Section 

5 uses the proposed algorithm to solve two classical 

engineering design problems. Finally, section 6 draws a 

conclusion. 

 

2. Spider Monkey Optimization Algorithm 
 

Spider monkey optimization (SMO) algorithm is a global 

unconstrained optimization algorithm to solve the following 

problems 

min   ( )f x  

where Dx R . SMO mimics the fission-fusion social 

structure (FFSS) based foraging behavior of spider monkeys. 

If the group leader does not find enough food, the group is 

divided into subgroups. SMO algorithm uses the following 

characteristic of spider monkey. If the times of global optimal 

solution not updated reaches a certain threshold, the spider 

monkeys are grouped, which contributes in the exploration of 

the search space. Every spider monkey represents a potential 

solution of the problem under consideration. There are seven 

stages in the SMO algorithm. They are initialization, local 

leader phase, global leader phase, local leader learning phase, 
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global leader learning phase, local leader decision phase and 

global leader decision phase. The following briefly 

summarizes these phases. 

 

2.1 Initialization 

 

In this phase, SMO produces an initial population of N spider 

monkeys of dimension D in the search space. The formula is 

as follows. 

min max min(0,1) ( )ij j j jSM SM U SM SM            (1)
 

where ijSM represent the thj dimension of thj spider 

monkey, max jSM and min jSM  are upper and lower bounds in 

thj dimension and (0,1)U is a uniformly distributed random 

number in the range [0,1] . 

 

2.2 Local Leader Phase 

 

In this phase, every spider monkey has chance to update its 

position based on the experience of local leader and local 

group member in the local group which include this spider 

monkey. The fitness value of the new position is calculated 

and compared with that of the old one, then the one with 

higher fitness value is selected as the new position. If the 

inequation (0,1)U pr  is satisfied, where (0,1)U  is a 

uniformly distributed random number in the range [0,1]  and 

pr is the perturbation rate, the thi spider monkey in 

thk group updates its position use Eq(2), otherwise, its 

position remains unchanged.  

(0,1) ( )

( 1,1) ( ) 

newij ij kj ij

rj ij

SM SM U LL SM

U SM SM

   

   
           (2) 

where kjLL  is the thj dimension of local leader of thk group, 

rjSM is the thj dimension of the thr spider monkey selected 

randomly from the thk group in thj dimension with r i  

and (-1,1)U is a uniformly distributed random number in the 

range [-1,1]. 

 

2.3 Global Leader Phase 

 

This phase follows the local leader phase. Spider monkeys 

update their position in this stage using the experience of 

global leader and local group member based on the 

probabilities factor iprob which are calculated using their 

fitness. The probability iprob is calculated using Eq(3). 

0.9 0.1 
max_

i

i

fitness
prob

fitness
                     (3) 

where ifitness  is the fitness value of thi spider monkey 

which is defined by its objective function value if  as Eq(4) 

and max_ fitness  is the maximum fitness in the group. 

1
,       if 0

1

1 ( ),    if 0

i
ii

i i

f
ffitness

abs f f




 
  

                      (4) 

The position update formula is as follows.  

(0,1) ( )

( 1,1) ( )

newij ij j ij

rj ij

SM SM U GL SM

U SM SM

   

   
          (5) 

where jGL  represents the thj  dimension of global leader and 

j
 
is a randomly selected dimension. If the fitness value of the 

newly updated position is higher than that of the original 

position, then the spider monkey moves to the new position. 

In this process, the update times of each group is recorded. 

The update process of a group is not ended until the number of 

group updates exceeds the number of members in the group. 

 

2.4 Global Leader Learning Phase 

 

The spider monkey with the largest fitness value in the group 

is selected as the global leader by greedy selection in this 

phase. Moreover, if the position of the global leader is not 

updated, the related count GlobalLeaderCount increases by 1, 

otherwise it is set to 0. 

 

2.5 Local Leader Learning Phase 

 

This phase is similar to the global leader learning phase. The 

spider monkey with best fitness in a subgroup is selected as 

the local leader of this subgroup by greedy selection. 

Furthermore, the related count GlobalLeaderCount of that 

group is incremented by 1 if the position of the local leader is 

not updated, otherwise it is set to 0. 

 

2.6 Local Leader Decision Phase 

 

If the related count GlobalLeaderCount of a subgroup 

exceeds the preset parameter called LocalLeaderLimit , the 

members in this group update their position either by random 

initialization using Eq(1) or using the experience of global 

leader and local leader through Eq(5) based on the 

perturbation rate.  

(0,1) ( )

(0,1) ( )

newij ij j ij

ij kj

SM SM U GL SM

U SM LL

   

  
       (6) 

2.7 Global Leader Decision Phase 

 

If the position of the global leader is not updated within the 

preset number of times called LocalLeaderLimit , the global 

leader divides the group into smaller groups. If the number of 

groups reaches the preset maximum group ( MG ), then it is 

the time of integration. The global leader combines subgroups 

into a group. After forming a new group, the Local Leader 

Learning phase is started to select the local leaders of new 

groups. This process reflects the fission-fusion social 

structure of spider monkey. 

 

2.8 Iteration Process of Spider Monkey Optimization 

Algorithm 

 

Step1. Initialize population using Eq(1), set the 

parameters pr , GlobalLeaderLimit , LocalLeaderLimit . 

 

Step2. Calculate the fitness value of each spider monkey and 

select global leader and local leaders by greedy selection 

according to the fitness values. 

 

Step3. Judge whether the maximum number of iterations is 

reached. If it does, the function value of global leader is output 

and the SMO is end. Otherwise, the next step is carried out. 
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Step4. All spider monkey update their position by LLP. 

 

Step5. Calculate the fitness value of the new position obtained 

from the previous step, and select the better one by comparing 

with the old position. 

 

Step6. Calculate the probability iprob of each spider monkey 

using Eq(3). 

 

Step7. Select the spider monkeys according to the iprob  and 

update their position by GLP. 

 

Step8. Update global leader and local leaders of all the groups 

through LLL and GLL. 

 

Step9. If the count iLocalLeaderCount is greater 

than LocalLeaderLimit , the members of thi subgroup update 

their position by LLD. 

 

Step10. If the count GlobalLeaderCount is greater 

than GlobalLeaderLimit , the global leader divides the group 

into subgroups. If the number of groups reaches the maximum 

group ( )MG , all groups combine into a group, then turn to 

Step3. 

 

3. The Proposed Spider Monkey Optimization 

Algorithm 

 

In particle swarm optimization (PSO) algorithm, there is an 

inertia weight in the iteration formula of particle velocity to 

reflect the self-learning ability of particle. Further, a large 

inertia weight is helpful to global search while a small inertia 

weight is contributed to local search. Inspired by this, we 

introduce the inertia weight strategy into the spider monkey 

optimization algorithm to form a modified spider monkey 

optimization algorithm (SAWSMO). Different spider 

monkeys have different objective function values, which 

means that they have different distances from the optimal 

solution, and the degree to which they need to learn from 

themselves are different. Therefore we recommend inertia 

weight based on individual objective function value into the 

local leader phase where each spider monkey has the 

opportunity to update its position to strengthen its 

self-learning ability. The self-adaptive inertia weight is set as 

follows. 

min
min max min

min

max

( )
( ) , ( )

                                                   , ( )

d d
d di
i aved d d

i ave

d d
i ave

f SM f
f SM f

f f

f SM f

  




 
  

 




 

(7) 

where max and min are the predetermined maximum and 

minimum inertia coefficients, which are generally taken as 0.9 

and 0.4, min
df  and d

avef are the minimum objective function 

value and average objective function value of all individual 

function values in the thd iteration, and ( )d
if SM  is the 

objective function value of the thi spider monkey in the thd  

iteration. It can be seen easily that, the smaller objective 

function value of spider monkey is, the closer it is to the 

optimal solution, and the smaller inertia weight will be used to 

enhance local search. On the other hand, the larger objective 

function value of spider monkey is, the farther it is from the 

optimal solution, and the large inertia weight will be used to 

enhance global search. The self-adaptive inertia weight is put 

into the position update formula in local leader phase. 

Therefore, the position update formula in local leader phase in 

the proposed spider monkey optimization algorithm based on 

self-adaptive inertia weight (SAWSMO) is described as 

follows. 

(0,1) ( ) ( 1,1) ( )

newij ij

kj ij rj ij

SM SM

U LL SM U SM SM

  

     
    (8) 

where   is defined by Eq(7). The other phases in algorithm 

SAWSMO are consistent with those in the original SMO. The 

pseudo code of modified LLP in algorithm SAWSMO is 

shown in Algorithm1. The flowchart of the proposed 

algorithm SAWSMO is shown in Figure 1. 

Algorithm1 Position update process in local leader phase in algorithm 
SAWSMO 

Calculate 
min , avef f  

for each  1,k MG  do 

   for each member th

iSM k group do 

     Calculate ( )if SM  

     if 
ave( )if SM f  

       min
min max min

ave min

( )
( ) if SM f

f f
   


  


 

     else 

       
max   

     end if 

     for each  1,j D  do 

       if (0,1)U pr  then 

         (0,1) ( ) ( 1,1) ( )newij ij kj ij rj ijSM SM U LL SM U SM SM          

       else 

         newij ijSM SM  

       end if 
     end for 

   end for 

 end for 

 
Figure 1: The flowchart of algorithm SAWSMO 

4. Numerical Experiment  
 

The proposed algorithm SAWSMO is tested on 20 benchmark 

problems[10], which are shown in Table 1.  
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Table 1: Benchmark problems used in numerical experiments 
Test Problem Objective function Search Range Optimum Value D 

Parabola Sphere(
1P ) 2

1 1
( )

D

ii
P x x


  [-5.12,5.12] 0 30 

Step function(
2P ) 

2

2 1
( ) 0.5

D

ii
P x x


     [-100,100] 0 30 

Ackley(
3P ) 2

3 1 1

1 1
( ) 20exp( 0.2 ) exp( cos(2 )) 20

D D

i ii i
P x x x e

D D


 
        [-32.768,32.768] 0 30 

Griewank(
4P ) 

2

4 1 1
( ) cos( ) 1

4000

DD i i

i i

x x
P x

i 
     [-600,600] 0 30 

Axis parallel 

hyper ellipsoid(
5P ) 

2

5 1
( )

D

ii
P x ix


  [-5.12,5.12] 0 30 

Levy(
6P ) 

12 2 2 2

6 1 1

2

( ) sin ( ) ( 1) [1 10sin ( 1)] ( 1) [1

1
sin (2 )],  Where 1 , 1, ,

4

D

i i Di

i
D i

P x

x
i D

   

 




      


  


 [-10,10] 0 30 

Rastrigin(
7P ) 2

7 1
( ) ( 10cos(2 ) 10 )

D

i ii
P x x x D


    [-5.12,5.12] 0 30 

Rosenbrock(
8P ) 

-1 2 2 2

8 11
( ) [100( ) ( 1) ]

D

i i ii
P x x x x

     [-5,10] 0 30 

Schewefel(
9P ) 

9 1
( ) sin( )

D

i ii
P x x x


   [-500,500] -12569.487 30 

Schewefel1.2(
10P ) 2

10 1 1
( ) ( )

D i

ji j
P x x

 
   [-100,100] 0 30 

Sum of different power(
11P ) 

1

11 1
( )

D i

ii
P x x






 

[-1,1] 0 30 

Dixon price(
12P ) 2 2 2

12 1 12
( ) ( 1) (2 )

D

i ii
P x x i x x 

   
 

[-10,10] 0 30 

Easom(
13P ) 2 2

13 11
( ) ( 1) ( cos ( ))exp[ ( ) ]

D Dn

i iii
P x x x 


    

 
[ 2 ,2 ]   -1 30 

Michalewicz(
14P ) 

2
20

14 1
( ) sin( )[sin( )]

D i
ii

ix
P x x


 

 
[0, ]

 
-9.66015 30 

Perm(
15P ) 2

15 1 1

1
( ) ( ( )( ))

D D i

j ii j
P x j x

j


 
   

 

[-30,30]
 

0 30 

Rotated hyper Ellipsoid(
16P ) 2

16 1 1
( )

D i

ji j
P x x

 
 

 

[-65.536,65.536] 0 30 

Styblinski Tang(
17P ) 4 2

17 1

1
( ) ( 16 5 )

2

D

i i ii
P x x x x


  

 

[-5,5] -1174.9797 30 

Trid Function(
18P ) 2

18 11 2
( ) ( 1)

D D

i i ii i
P x x x x  

   
 

[-900,900] -4930 30 

Xin She(
19P ) 2

19 1 1
( ) ( )exp[ sin( )]

D D

i ii i
P x x x

 
  

 
[ 2 ,2 ]   0 30 

Zakharov’s(
20P ) 2 2 4

20 1 1 1
( ) ( ) ( )

2 2

D D D

i i ii i i

i i
P x x x x

  
    

 
[-5,10]

 
0 30 

The comparison results with the original SMO, SMOGA[10], 

and GASMO[10] on the best and average objective function 

values are shown in Table 2. The relevant data of SMO, 

SMOGA and GASMO are taken from[10]. The running 

conditions for the proposed algorithm SAWSMO are set to 

the same as those for SMO, SMOGA and GASMO. The 

maximum number of iterations is set to be 2000. The 

population size is taken as 100 and the count 

LocalLeaderLimit and GlobalLeaderLimit are set to be 3000 

and 100, respectively. Let perturbation rate ( )pr  increase 

linearly in [0.1,0.4] over iterations and set maximum 

groups(MG) to be 10. To reduce the influence of contingency, 

the experiment for algorithm SAWSMO on each benchmark 

problem is repeated 30 times independently.  

 

It is clear from Table 2 that, the algorithm SAWSMO reaches 

the theoretical optimal objective function value on 8 

benchmark problems ( 1P , 2P , 4P , 5P , 7P , 11P , 13P , 16P ). 

Moreover, the best objective function values and average 

objective function values of five problems (
1P ,

4P ,
5P ,

11P ,
16P ) 

obtained by SAWSMO are better than those by SMO, 

SMOGA and GASMO. SAWSMO improved the average 

objective function value on seven problems 

(
3P ,

6P ,
10P ,

15P ,
18P ,

19P ,
20P ), and the best objective function 

values of problems 
3P ,

6P and
18P are also improved by 

SAWSMO. The best objective function value of problem
20P

 
obtained by SAWSMO is better than those by SMOGA and 

GASMO. The best objective function values of problems 
10P

 
and 

15P
 
obtained by SAWSMO are better than those by 

SMOGA and the best objective function value of problem 
19P

 
obtained by SAWSMO is the same as that by SMO and 

SMOGA, which is better than that by GASMO. The best 

objective function values and the average objective function 

values of problems 
9P

 
and 

17P
 
obtained by SAWSMO are 

the same as those by SMO and SMOGA, which are better than 

those by GASMO. For problem 
14P , the best and average 

objective function values are only better than those by 

GASMO. The result on problem 
12P

 
are the same for these 

four comparison algorithms. The results on problem 
8P  

obtained by the algorithm SAWSMO are worse than those by 

other three algorithms. The above numerical results show that 

algorithm SAWSMO has some improvement in accuracy of 

objective function value and has some competitiveness among 

the four comparison algorithms. 
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Table 2: Experimental result 
Test Problem Algorithm Best Average 

1P  

SMO 5.45E-17 1.03E-16 

SMOGA 9.24E-53 1.49E-22 

GASMO 1.47E-34 2.21E-13 

SAWSMO 0 0 

2P  

SMO 0 0 
SMOGA 0 0 

GASMO 0 1.00E-01 

SAWSMO 0 0 

3P  

SMO 7.99E-15 2.01E-01 

SMOGA 7.99E-15 9.94E-06 

GASMO 7.99E-15 6.20E-02 

SAWSMO 4.44E-15 4.44E-15 

4P  

SMO 0 3.61E-03 

SMOGA 0 8.21E-04 

GASMO 0 1.81E-03 

SAWSMO 0 0 

5P  

SMO 6.26E-17 1.11E-16 

SMOGA 6.83E-53 2.71E-27 

GASMO 4.06E-34 7.70E-12 

SAWSMO 0 0 

6P  

SMO 4.95E-17 8.99E-17 

SMOGA 1.50E-32 6.32E-20 

GASMO 1.50E-32 6.11E-14 

SAWSMO 0 2.62E-26 

7P  

SMO 0 0 

SMOGA 0 0 

GASMO 8.95E+00 1.44E+01 
SAWSMO 0 0 

8P  

SMO 4.97E-07 9.52E+00 

SMOGA 7.63E-03 2.28E+01 

GASMO 3.72E-03 2.09E+01 

SAWSMO 2.66E+01 2.67E+01 

9P  

SMO -1.26E+04 -1.26E+04 

SMOGA -1.26E+04 -1.26E+04 

GASMO -1.17E+04 -1.11E+04 
SAWSMO -1.26E+04 -1.26E+04 

10P  

SMO 2.31E-12 3.49E-03 

SMOGA 3.53E-03 1.25E+01 

GASMO 2.53E-08 1.71E-03 

SAWSMO 1.44E-06 1.59E-03 

 

11P  

SMO 2.09E-18 3.25E-17 

SMOGA 9.13E-36 1.34E-21 

GASMO 1.20E-35 5.22E-18 
SAWSMO 0 0 

12P  

SMO 6.67E-01 6.67E-01 

SMOGA 6.67E-01 6.67E-01 

GASMO 6.67E-01 6.67E-01 

SAWSMO 6.67E-01 6.67E-01 

13P  

SMO -7.85E-139 -2.62E-140 

SMOGA -1 -1 
GASMO -1 -1 

SAWSMO -1 -1 

14P  

SMO -2.96E+01 -2.94E+01 

SMOGA -2.95E+01 -2.92E+01 

GASMO -2.81E+01 -2.62E+01 

SAWSMO -2.89E+01 -2.85E+01 

15P  

SMO 1.30E-04 2.38E+01 

SMOGA 2.05E-04 1.55E+01 
GASMO 1.81E-04 2.20E+02 

SAWSMO 1.95E-04 2.12E+00 

16P  

SMO 5.26E-17 9.32E-17 

SMOGA 1.10E-52 1.88E-24 

GASMO 2.19E-32 6.58E-12 

SAWSMO 0 0 

17P  

SMO -1.17E+03 -1.17E+03 

SMOGA -1.17E+03 -1.17E+03 
GASMO -1.16E+03 -1.10E+03 

SAWSMO -1.17E+03 -1.17E+03 

18P  

SMO 1.51E+01 1.08E+02 

SMOGA 1.50E+01 1.99E+02 

GASMO 1.50E+01 1.32E+02 

SAWSMO -1.28E+03 -1.16E+03 

19P  

SMO 3.51E-12 3.52E-12 
SMOGA 3.51E-12 3.66E-12 

GASMO 5.18E-12 8.10E-12 

SAWSMO 3.51E-12 3.51E-12 

20P  

SMO 1.17E-12 6.56E-10 

SMOGA 1.07E-07 4.78E-05 

GASMO 3.98E-10 1.29E-08 

SAWSMO 2.12E-12 8.18E-11 

Table 3: The number of iteration for algorithm SAWSMO to 

achieve the error 1E-6 
Test Problem Maximum times Minimum times Average times 

1P  143 128 135.1 

2P  52 43 48.5 

3P  172 159 166.8 

4P  126 103 111.5 

5P  98 91 95.1 

6P  106 5 51.3 

7P  1178 899 1036.2 

11P  23 17 20.5 

13P  672 618 639.7 

16P  122 114 118.3 

19P  9 1 5.3 

20P  1412 1158 1287.4 

It can be known from Table 2 that, for 12 benchmark 

problems, the errors between the best function value obtained 

by algorithm SAWSMO and the theoretical optimal value are 

lower than 1E-6. Setting the termination condition to be either 

the error 1E-6 of objective function value achieved or 

maximum iteration number 2000 reached, we counted up the 

maximum, minimum and average iteration times of the 

algorithm SAWSMO to solve the above 12 benchmark 

problems 30 times independently. The statistics results are 

shown in Table 3. 

 

It can be seen from Table 3 that, the algorithm SAWSMO can 

achieve the specified accuracy 1E-6 of objective function 

value within the maximum iteration number 2000 for all 12 

benchmark problems. The maximum, minimum and average 

iteration times for 4 problems (
1P ,

3P ,
4P ,

16P ) are all within 

200, and the maximum, minimum and average iteration times 

for 3 problems (
2P ,

5P ,
11P ) are within 100, the minimum 

iteration times for problem
6P is 5. For the problem 

19f , the 

maximum, minimum and average iteration times are within 

10, and the minimum iteration times is only 1. These results 

show that the proposed algorithm SAWSMO improves the 

convergence speed of the algorithm SMO to a certain extent. 

 

5. Application in Classical Engineering Design 

Problems 
 

This section further verifies the performance and efficiency of 

the algorithm SAWSMO by solving two real engineering 

design problems: pressure vessel design and 

tension/compression spring design. These problems were 

widely discussed in the literature and have been solved to 

better clarify the effectiveness of the algorithms. These 

engineering design problems can be described as the 

optimization problem with constraints. The constrained 

optimization problems are converted into a series of 

unconstrained optimization problems by the penalty function 

method. Then, the proposed algorithm SAWSMO is 

employed to solve the converted unconstrained optimization 

problems. In algorithm SAWSMO, the population size N is 

30, GlobalLeaderLimit is 30, LocalLeaderLimit is *N D , 

where D is the dimension of problem, the maximum number 
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of group is 5 and pr is the same as the previous numerical 

experiments.  

 

5.1 Pressure Vessel Design Problem 

 

The pressure vessel is composed of a thick cylindrical shell 

and a hemispherical body with thickness on both sides. The 

goal of the pressure vessel design problem is to minimize the 

cost of fabrication, including material, forming and welding 

costs[14]. There are four variables in this problem: the 

thickness of the shell(
sT ), the thickness of the head(

hT ), the 

inner radius( R ) and the length of the cylindrical shell( L ), as 

shown in Figure 2[15]. They are called 
1x ,

2x ,
3x and 

4x respectively. The mathematical formulation of the pressure 

vessel design problem can be described as follows[15].

2 2 2

1 3 4 2 3 1 4 1 3

1 1 3

2 2 3

2 3

3 3 4 3

4 4

min  ( ) 0.6224 1.7781 3.1661 19.84

. .   ( ) 0.0193 0

       ( ) 0.00954 0

4
       ( ) 1296000 0

3

       ( ) 240 0                          

f x x x x x x x x x x

s t g x x x

g x x x

g x x x x

g x x

 

   

   

   

    

  

1 2 3 4

                                     

0 99,    0 99,   10 200,   10 200x x x x       

                               (10) 

The algorithm SAWSMO is applied to solve the pressure 

vessel design problem and compared with other 17 

optimization algorithms which were reported in previews 

works as shown in Table 4. It can be seen from Table 4 that, 

with respect to the 17 comparison algorithms, the proposed 

algorithm SAWSMO provides a better design scheme for the 

pressure vessel design problem. 

 
Figure 2: Pressure vessel design. 

 
Figure 3: Tension/compression spring design 

 

5.2 Tension/compression Spring Design Problem 

 

The objective of the tension/compression spring design 

problem is to reduce the weight of tension/compression spring 

by determining the optimal value of three variables: the wire 

diameter 
1( )d x , the mean coil diameter 

2( )D x  and the 

number of active coils 
3( )N x , as shown in Figure 3[15]. The 

mathematical expression of the problem is as follows[15]. 

2

3 2 1

3

2 3

1 4

1

2

2 1 2

2 3 4 2

2 1 1 1

1

3 2

2 3

2 1

4

min  ( ) ( 2)

. .  ( ) 1 0
71785

4 1
     ( ) 1 0

12566( ) 5108

140.45
     ( ) 1 0

     ( ) 1 0                                         
1.5

0.05

f x x x x

x x
s t g x

x

x x x
g x

x x x x

x
g x

x x

x x
g x

 

  


   



  


  

 1 2 32.0,   0.25 x 1.3,  2.0 15.0x x    

(11) 

Table 4: Comparison of the best value for pressure vessel design problem 

Algorithm 
Design variables 

Best cost 
sT  

hT  R  L  

GSA[16] 1.125 0.625 55.9886598 84.4542025 8538.8359 
Branch-bound[17] 1.125 0.625 48.97 106.72 7982.5 

Lagrangian multiplier[18] 1.125 0.625 58.291 43.690 7198.200 

CPSO[14] 0.8125 0.4375 42.091266 176.7465 6061.0777 
MVO[19] 0.8125 0.4375 42.090738 176.73869 6061.8066 

GA[20] 0.81250 0.43750 42.097398 176.65405 6059.94634 

ES[21] 0.8125 0.4375 42.098087 176.640518 6059.74560 

WOA[22] 0.812500 0.437500 42.0982699 176.638998 6059.7410 

CSCA[23] 0.8125 0.4375 42.098411 176.63769 6059.7340 

ACO[24] 0.812500 0.437500 42.098353 176.637751 6059.7258 
HPSO[14] 0.8125 0.4375 42.0984 176.6366 6059.7143 

PSO-SCA[25] 0.8125 0.4375 42.098446 176.6366 6059.71433 

AFA[26] 0.8125 0.4375 42.0984 176.6366 6059.7143 
SMO[15] 0.778785 0.384684 40.32225 200 5890.337 

MBA[27] 0.7802 0.3856 40.4292 198.4964 5889.3216 

TEO[28] 0.779151 0.385296 40.369858 199.301899 5887.51107 
SMONM[15] 0.778322 0.384725 40.3275957 199.8889 5885.595 

SAWSMO 0.778169 0.384649 40.319654 200 5885.344737 
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Table 5 is the optimization results obtained by the proposed 

algorithm SAWSMO for this problem, which are compared 

with other 15 optimization algorithms that were respect 

preciously. It can be seen from Table 5 that, with respected to 

the 15 comparison algorithms, the proposed algorithm 

SAWSMO made better results for tension/compression spring 

design problem. 

Table 5: Comparison of the beast value for 

Tension/compression on spring design problem 

Algorithm 
Design variables 

Best value 
d D N 

Ray-Saini 

method[29] 
0.321532 0.050417 13.979915 0.013060 

MVO 0.05251 0.37602 10.33513 0.012790 
Belegundu-Arora 

method[30] 
0.0500 0.3177 14.026 0.012730 

GA[31] 0.051480 0.351661 11.632201 0.01270478 
GSA 0.050276 0.323680 13.525410 0.0127022 

ES 0.051643 0.355360 11.397926 0.012698 

SMO 0.052818 0.384478 9.82953 0.012688 
RO[24] 0.051370 0.349096 11.76279 0.0136788 

WOA 0.051207 0.345215 12.004032 0.0126763 

CSCA 0.051609 0.354714 11.410831 0.0126702 
IGWO[32] 0.051701 0.356983 11.2756 0.012667 

ISCA[33] 0.0520217 0.364768 10.8323 0.012667 
SMONM 0.051918 0.362248 10.97194 0.012666 

SC-PSO[34] 0.051583 0.354190 11.438675 0.012665 

EEGWO[35] 0.051673 0.35634 11.3113 0.012665 

SAWSMO 0.0517380 0.3579292 11.2158455 0.0126632 

6. Conclusion  
 

In this paper, a modified spider monkey optimization 

algorithm based on self-adaptive inertia weight is proposed. 

Inspired by particle swarm optimization algorithm, the 

adaptive inertia weight is integrated into position update 

formula in the local leader phase where each spider monkey 

has the opportunity to update its own position. As the degree 

of self-learning is different according to the objective function 

values of different spider monkeys, the adaptive inertia 

weight is used to make the spider monkey use its own 

experience better. The numerical results on 20 benchmark 

problems show that, compare to the original spider monkey 

optimization algorithm and the hybrid algorithms SMOGA 

and GASMO, the modified spider monkey optimization 

algorithm based on self-adaptive inertia weight has a certain 

improvement in convergence accuracy and speed. The 

proposed algorithm SAWSMO can provide better design 

schemes when it is applied in two classical engineering design 

problems. It can be further studied in the future. 
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