
Journal of Innovation and Social Science Research ISSN: 2591-6890

www.jissr.net

 Volume 8 Issue 12, 2021

Modified Spider Monkey Optimization Algorithm

Based on Self-Adaptive Inertia Weight

Ximing Liang, Yang Zhang*

School of Science, Beijing University of Civil Engineering and Architecture, Beijing 102616, China

*Corresponding Author

Abstract: Spider monkey optimization (SMO) algorithm is a new swarm intelligence optimization algorithm proposed in recent years. It

simulates the foraging behavior of spider monkeys which have fission-fusion social structure (FFSS). In this paper, a modified spider

monkey optimization algorithm is proposed. The self-adaptive inertia weight is introduced in the local leader phase to enhance the

self-learning ability of the spider monkey. According to the function value of an individual, the distance from the optimal value is

determined, so the inertia weight related the individual function value is added to strength the global search ability or local search ability.

The proposed algorithm is tested on 20 benchmark problems and compared with the original SMO and the hybrid algorithm SMOGA and

GASMO. The numerical results show that the proposed algorithm has a certain degree of improvement in convergence accuracy and

convergence speed. The performance of the proposed algorithm is also inspected by two classical engineering design problems.

Keywords: Swarm intelligence optimization, Spider monkey optimization, Self-adaptive inertia weight, Numerical experiment.

1. Introduction

Nowadays, more and more researchers pay attention to nature

inspired algorithms (NIA) which can solve the complex

optimization problems in the real world. NIA is composed of

evolutionary algorithms and swarm intelligence algorithms.

Evolutionary algorithms use mechanisms motivated by

biological evolution, like selection, crossover, mutation,

etc[1]. such as genetic algorithm (GA)[2], differential

evolution (DE)[3] and so on. Swarm intelligence algorithms

imitate the social behaviour of biology in the real world such

as particle swarm optimization (PSO)[4], grey wolf

optimization (GWO)[5], artificial bee colony optimization

(ABC)[6] and so on. These algorithms have widely

applications in real life.

The spider monkey optimization (SMO) algorithm[7] is a

swarm intelligence algorithm which proposed by J.C. Bansal

et al. in 2014. SMO simulates the foraging behavior of spider

monkeys, which have been classified as the animals with

fission-fusion social structure (FFSS). When the female

spider (global leader) does not get enough food for the group,

she divides the group into sub-groups to search food to reduce

the foraging competition among group members. Although

this algorithm has not been proposed for a long time, it has

been studied by many scholars. Kumar et al. introduce a

self-adaptive spider monkey optimization (SaSMO)[8], in

which the step size in position updating formula in local

leader phase and local leader decision phase was updated

using self-adaptive strategy. The algorithm performed better

in terms of reliability, efficiency and accuracy. Gupta et al.

proposed the QA-based spider monkey optimization

(QASMO)[9], in which the quadratic approximation operator

was incorporated in SMO to enhance the local search

capability. Agrawal et al. introduced two hybrid algorithms of

genetic algorithm (GA) and spider monkey optimization

algorithm (SMO)[10]. Their results indicated that the

effective hybridizations had the potential to improve the

performances of both GA and SMO. As the principle of SMO

is simple and the parameters in SMO are few, SMO has been

applied to solve electromagnetic problems[11], economic

dispatch problems[12], optimal design of PIDA controller[13]

and so on. However, SMO has the same disadvantages as that

in other population-based algorithms, such as low

convergence accuracy and easy to fall into local optimization.

A modified version of SMO, called spider monkey

optimization algorithm based on self-adaptive inertia weight

(SAWSMO), is proposed. To enhance the spider monkeys’

self-learning ability, the self-adaptive inertia weight inspired

by PSO is added to the position update formula in local leader

phase. The proposed algorithm SAWSMO is tested on 20

benchmark problems from[10] and the numerical results are

compared with those of the original SMO and two modified

SMO algorithms SMOGA and GASMO. The performance of

the proposed algorithm SAWSMO is inspected by two

classical engineering design problems.

The rest of the paper is organized as follows: Section 2

introduces the original spider monkey optimization algorithm.

The details of the proposed algorithm SAWSMO is described

in section 3. Section 4 includes numerical experiment. Section

5 uses the proposed algorithm to solve two classical

engineering design problems. Finally, section 6 draws a

conclusion.

2. Spider Monkey Optimization Algorithm

Spider monkey optimization (SMO) algorithm is a global

unconstrained optimization algorithm to solve the following

problems

min ()f x

where Dx R . SMO mimics the fission-fusion social

structure (FFSS) based foraging behavior of spider monkeys.

If the group leader does not find enough food, the group is

divided into subgroups. SMO algorithm uses the following

characteristic of spider monkey. If the times of global optimal

solution not updated reaches a certain threshold, the spider

monkeys are grouped, which contributes in the exploration of

the search space. Every spider monkey represents a potential

solution of the problem under consideration. There are seven

stages in the SMO algorithm. They are initialization, local

leader phase, global leader phase, local leader learning phase,

DOI: 10.53469/jissr.2021.08(12).09

39

Journal of Innovation and Social Science Research ISSN: 2591-6890

www.jissr.net

 Volume 8 Issue 12, 2021

global leader learning phase, local leader decision phase and

global leader decision phase. The following briefly

summarizes these phases.

2.1 Initialization

In this phase, SMO produces an initial population of N spider

monkeys of dimension D in the search space. The formula is

as follows.

min max min(0,1) ()ij j j jSM SM U SM SM    (1)

where ijSM represent the thj dimension of thj spider

monkey, max jSM and min jSM are upper and lower bounds in

thj dimension and (0,1)U is a uniformly distributed random

number in the range [0,1] .

2.2 Local Leader Phase

In this phase, every spider monkey has chance to update its

position based on the experience of local leader and local

group member in the local group which include this spider

monkey. The fitness value of the new position is calculated

and compared with that of the old one, then the one with

higher fitness value is selected as the new position. If the

inequation (0,1)U pr is satisfied, where (0,1)U is a

uniformly distributed random number in the range [0,1] and

pr is the perturbation rate, the thi spider monkey in

thk group updates its position use Eq(2), otherwise, its

position remains unchanged.

(0,1) ()

(1,1) ()

newij ij kj ij

rj ij

SM SM U LL SM

U SM SM

   

   
 (2)

where kjLL is the thj dimension of local leader of thk group,

rjSM is the thj dimension of the thr spider monkey selected

randomly from the thk group in thj dimension with r i

and (-1,1)U is a uniformly distributed random number in the

range [-1,1].

2.3 Global Leader Phase

This phase follows the local leader phase. Spider monkeys

update their position in this stage using the experience of

global leader and local group member based on the

probabilities factor iprob which are calculated using their

fitness. The probability iprob is calculated using Eq(3).

0.9 0.1
max_

i

i

fitness
prob

fitness
   (3)

where ifitness is the fitness value of thi spider monkey

which is defined by its objective function value if as Eq(4)

and max_ fitness is the maximum fitness in the group.

1
, if 0

1

1 (), if 0

i
ii

i i

f
ffitness

abs f f




 
  

 (4)

The position update formula is as follows.

(0,1) ()

(1,1) ()

newij ij j ij

rj ij

SM SM U GL SM

U SM SM

   

   
 (5)

where jGL represents the thj dimension of global leader and

j

is a randomly selected dimension. If the fitness value of the

newly updated position is higher than that of the original

position, then the spider monkey moves to the new position.

In this process, the update times of each group is recorded.

The update process of a group is not ended until the number of

group updates exceeds the number of members in the group.

2.4 Global Leader Learning Phase

The spider monkey with the largest fitness value in the group

is selected as the global leader by greedy selection in this

phase. Moreover, if the position of the global leader is not

updated, the related count GlobalLeaderCount increases by 1,

otherwise it is set to 0.

2.5 Local Leader Learning Phase

This phase is similar to the global leader learning phase. The

spider monkey with best fitness in a subgroup is selected as

the local leader of this subgroup by greedy selection.

Furthermore, the related count GlobalLeaderCount of that

group is incremented by 1 if the position of the local leader is

not updated, otherwise it is set to 0.

2.6 Local Leader Decision Phase

If the related count GlobalLeaderCount of a subgroup

exceeds the preset parameter called LocalLeaderLimit , the

members in this group update their position either by random

initialization using Eq(1) or using the experience of global

leader and local leader through Eq(5) based on the

perturbation rate.

(0,1) ()

(0,1) ()

newij ij j ij

ij kj

SM SM U GL SM

U SM LL

   

  
 (6)

2.7 Global Leader Decision Phase

If the position of the global leader is not updated within the

preset number of times called LocalLeaderLimit , the global

leader divides the group into smaller groups. If the number of

groups reaches the preset maximum group (MG), then it is

the time of integration. The global leader combines subgroups

into a group. After forming a new group, the Local Leader

Learning phase is started to select the local leaders of new

groups. This process reflects the fission-fusion social

structure of spider monkey.

2.8 Iteration Process of Spider Monkey Optimization

Algorithm

Step1. Initialize population using Eq(1), set the

parameters pr , GlobalLeaderLimit , LocalLeaderLimit .

Step2. Calculate the fitness value of each spider monkey and

select global leader and local leaders by greedy selection

according to the fitness values.

Step3. Judge whether the maximum number of iterations is

reached. If it does, the function value of global leader is output

and the SMO is end. Otherwise, the next step is carried out.

40

Journal of Innovation and Social Science Research ISSN: 2591-6890

www.jissr.net

 Volume 8 Issue 12, 2021

Step4. All spider monkey update their position by LLP.

Step5. Calculate the fitness value of the new position obtained

from the previous step, and select the better one by comparing

with the old position.

Step6. Calculate the probability iprob of each spider monkey

using Eq(3).

Step7. Select the spider monkeys according to the iprob and

update their position by GLP.

Step8. Update global leader and local leaders of all the groups

through LLL and GLL.

Step9. If the count iLocalLeaderCount is greater

than LocalLeaderLimit , the members of thi subgroup update

their position by LLD.

Step10. If the count GlobalLeaderCount is greater

than GlobalLeaderLimit , the global leader divides the group

into subgroups. If the number of groups reaches the maximum

group ()MG , all groups combine into a group, then turn to

Step3.

3. The Proposed Spider Monkey Optimization

Algorithm

In particle swarm optimization (PSO) algorithm, there is an

inertia weight in the iteration formula of particle velocity to

reflect the self-learning ability of particle. Further, a large

inertia weight is helpful to global search while a small inertia

weight is contributed to local search. Inspired by this, we

introduce the inertia weight strategy into the spider monkey

optimization algorithm to form a modified spider monkey

optimization algorithm (SAWSMO). Different spider

monkeys have different objective function values, which

means that they have different distances from the optimal

solution, and the degree to which they need to learn from

themselves are different. Therefore we recommend inertia

weight based on individual objective function value into the

local leader phase where each spider monkey has the

opportunity to update its position to strengthen its

self-learning ability. The self-adaptive inertia weight is set as

follows.

min
min max min

min

max

()
() , ()

 , ()

d d
d di
i aved d d

i ave

d d
i ave

f SM f
f SM f

f f

f SM f

  




 
  

 




(7)

where max and min are the predetermined maximum and

minimum inertia coefficients, which are generally taken as 0.9

and 0.4, min
df and d

avef are the minimum objective function

value and average objective function value of all individual

function values in the thd iteration, and ()d
if SM is the

objective function value of the thi spider monkey in the thd

iteration. It can be seen easily that, the smaller objective

function value of spider monkey is, the closer it is to the

optimal solution, and the smaller inertia weight will be used to

enhance local search. On the other hand, the larger objective

function value of spider monkey is, the farther it is from the

optimal solution, and the large inertia weight will be used to

enhance global search. The self-adaptive inertia weight is put

into the position update formula in local leader phase.

Therefore, the position update formula in local leader phase in

the proposed spider monkey optimization algorithm based on

self-adaptive inertia weight (SAWSMO) is described as

follows.

(0,1) () (1,1) ()

newij ij

kj ij rj ij

SM SM

U LL SM U SM SM

  

     
 (8)

where  is defined by Eq(7). The other phases in algorithm

SAWSMO are consistent with those in the original SMO. The

pseudo code of modified LLP in algorithm SAWSMO is

shown in Algorithm1. The flowchart of the proposed

algorithm SAWSMO is shown in Figure 1.

Algorithm1 Position update process in local leader phase in algorithm
SAWSMO

Calculate
min , avef f

for each  1,k MG do

 for each member th

iSM k group do

 Calculate ()if SM

 if
ave()if SM f

 min
min max min

ave min

()
() if SM f

f f
   


  



 else

max 

 end if

 for each  1,j D do

 if (0,1)U pr then

 (0,1) () (1,1) ()newij ij kj ij rj ijSM SM U LL SM U SM SM        

 else

 newij ijSM SM

 end if
 end for

 end for

 end for

Figure 1: The flowchart of algorithm SAWSMO

4. Numerical Experiment

The proposed algorithm SAWSMO is tested on 20 benchmark

problems[10], which are shown in Table 1.

41

Journal of Innovation and Social Science Research ISSN: 2591-6890

www.jissr.net

 Volume 8 Issue 12, 2021

Table 1: Benchmark problems used in numerical experiments
Test Problem Objective function Search Range Optimum Value D

Parabola Sphere(
1P) 2

1 1
()

D

ii
P x x


 [-5.12,5.12] 0 30

Step function(
2P)

2

2 1
() 0.5

D

ii
P x x


    [-100,100] 0 30

Ackley(
3P) 2

3 1 1

1 1
() 20exp(0.2) exp(cos(2)) 20

D D

i ii i
P x x x e

D D


 
       [-32.768,32.768] 0 30

Griewank(
4P)

2

4 1 1
() cos() 1

4000

DD i i

i i

x x
P x

i 
    [-600,600] 0 30

Axis parallel

hyper ellipsoid(
5P)

2

5 1
()

D

ii
P x ix


 [-5.12,5.12] 0 30

Levy(
6P)

12 2 2 2

6 1 1

2

() sin () (1) [1 10sin (1)] (1) [1

1
sin (2)], Where 1 , 1, ,

4

D

i i Di

i
D i

P x

x
i D

   

 




      


  


 [-10,10] 0 30

Rastrigin(
7P) 2

7 1
() (10cos(2) 10)

D

i ii
P x x x D


   [-5.12,5.12] 0 30

Rosenbrock(
8P)

-1 2 2 2

8 11
() [100() (1)]

D

i i ii
P x x x x

    [-5,10] 0 30

Schewefel(
9P)

9 1
() sin()

D

i ii
P x x x


  [-500,500] -12569.487 30

Schewefel1.2(
10P) 2

10 1 1
() ()

D i

ji j
P x x

 
  [-100,100] 0 30

Sum of different power(
11P)

1

11 1
()

D i

ii
P x x






[-1,1] 0 30

Dixon price(
12P) 2 2 2

12 1 12
() (1) (2)

D

i ii
P x x i x x 

   

[-10,10] 0 30

Easom(
13P) 2 2

13 11
() (1) (cos ())exp[()]

D Dn

i iii
P x x x 


    

[2 ,2]  -1 30

Michalewicz(
14P)

2
20

14 1
() sin()[sin()]

D i
ii

ix
P x x


 

[0,]

-9.66015 30

Perm(
15P) 2

15 1 1

1
() (()())

D D i

j ii j
P x j x

j


 
   

[-30,30]

0 30

Rotated hyper Ellipsoid(
16P) 2

16 1 1
()

D i

ji j
P x x

 
 

[-65.536,65.536] 0 30

Styblinski Tang(
17P) 4 2

17 1

1
() (16 5)

2

D

i i ii
P x x x x


  

[-5,5] -1174.9797 30

Trid Function(
18P) 2

18 11 2
() (1)

D D

i i ii i
P x x x x  

   

[-900,900] -4930 30

Xin She(
19P) 2

19 1 1
() ()exp[sin()]

D D

i ii i
P x x x

 
  

[2 ,2]  0 30

Zakharov’s(
20P) 2 2 4

20 1 1 1
() () ()

2 2

D D D

i i ii i i

i i
P x x x x

  
    

[-5,10]

0 30

The comparison results with the original SMO, SMOGA[10],

and GASMO[10] on the best and average objective function

values are shown in Table 2. The relevant data of SMO,

SMOGA and GASMO are taken from[10]. The running

conditions for the proposed algorithm SAWSMO are set to

the same as those for SMO, SMOGA and GASMO. The

maximum number of iterations is set to be 2000. The

population size is taken as 100 and the count

LocalLeaderLimit and GlobalLeaderLimit are set to be 3000

and 100, respectively. Let perturbation rate ()pr increase

linearly in [0.1,0.4] over iterations and set maximum

groups(MG) to be 10. To reduce the influence of contingency,

the experiment for algorithm SAWSMO on each benchmark

problem is repeated 30 times independently.

It is clear from Table 2 that, the algorithm SAWSMO reaches

the theoretical optimal objective function value on 8

benchmark problems (1P , 2P , 4P , 5P , 7P , 11P , 13P , 16P).

Moreover, the best objective function values and average

objective function values of five problems (
1P ,

4P ,
5P ,

11P ,
16P)

obtained by SAWSMO are better than those by SMO,

SMOGA and GASMO. SAWSMO improved the average

objective function value on seven problems

(
3P ,

6P ,
10P ,

15P ,
18P ,

19P ,
20P), and the best objective function

values of problems
3P ,

6P and
18P are also improved by

SAWSMO. The best objective function value of problem
20P

obtained by SAWSMO is better than those by SMOGA and

GASMO. The best objective function values of problems
10P

and

15P

obtained by SAWSMO are better than those by

SMOGA and the best objective function value of problem
19P

obtained by SAWSMO is the same as that by SMO and

SMOGA, which is better than that by GASMO. The best

objective function values and the average objective function

values of problems
9P

and

17P

obtained by SAWSMO are

the same as those by SMO and SMOGA, which are better than

those by GASMO. For problem
14P , the best and average

objective function values are only better than those by

GASMO. The result on problem
12P

are the same for these

four comparison algorithms. The results on problem
8P

obtained by the algorithm SAWSMO are worse than those by

other three algorithms. The above numerical results show that

algorithm SAWSMO has some improvement in accuracy of

objective function value and has some competitiveness among

the four comparison algorithms.

42

Journal of Innovation and Social Science Research ISSN: 2591-6890

www.jissr.net

 Volume 8 Issue 12, 2021

Table 2: Experimental result
Test Problem Algorithm Best Average

1P

SMO 5.45E-17 1.03E-16

SMOGA 9.24E-53 1.49E-22

GASMO 1.47E-34 2.21E-13

SAWSMO 0 0

2P

SMO 0 0
SMOGA 0 0

GASMO 0 1.00E-01

SAWSMO 0 0

3P

SMO 7.99E-15 2.01E-01

SMOGA 7.99E-15 9.94E-06

GASMO 7.99E-15 6.20E-02

SAWSMO 4.44E-15 4.44E-15

4P

SMO 0 3.61E-03

SMOGA 0 8.21E-04

GASMO 0 1.81E-03

SAWSMO 0 0

5P

SMO 6.26E-17 1.11E-16

SMOGA 6.83E-53 2.71E-27

GASMO 4.06E-34 7.70E-12

SAWSMO 0 0

6P

SMO 4.95E-17 8.99E-17

SMOGA 1.50E-32 6.32E-20

GASMO 1.50E-32 6.11E-14

SAWSMO 0 2.62E-26

7P

SMO 0 0

SMOGA 0 0

GASMO 8.95E+00 1.44E+01
SAWSMO 0 0

8P

SMO 4.97E-07 9.52E+00

SMOGA 7.63E-03 2.28E+01

GASMO 3.72E-03 2.09E+01

SAWSMO 2.66E+01 2.67E+01

9P

SMO -1.26E+04 -1.26E+04

SMOGA -1.26E+04 -1.26E+04

GASMO -1.17E+04 -1.11E+04
SAWSMO -1.26E+04 -1.26E+04

10P

SMO 2.31E-12 3.49E-03

SMOGA 3.53E-03 1.25E+01

GASMO 2.53E-08 1.71E-03

SAWSMO 1.44E-06 1.59E-03

11P

SMO 2.09E-18 3.25E-17

SMOGA 9.13E-36 1.34E-21

GASMO 1.20E-35 5.22E-18
SAWSMO 0 0

12P

SMO 6.67E-01 6.67E-01

SMOGA 6.67E-01 6.67E-01

GASMO 6.67E-01 6.67E-01

SAWSMO 6.67E-01 6.67E-01

13P

SMO -7.85E-139 -2.62E-140

SMOGA -1 -1
GASMO -1 -1

SAWSMO -1 -1

14P

SMO -2.96E+01 -2.94E+01

SMOGA -2.95E+01 -2.92E+01

GASMO -2.81E+01 -2.62E+01

SAWSMO -2.89E+01 -2.85E+01

15P

SMO 1.30E-04 2.38E+01

SMOGA 2.05E-04 1.55E+01
GASMO 1.81E-04 2.20E+02

SAWSMO 1.95E-04 2.12E+00

16P

SMO 5.26E-17 9.32E-17

SMOGA 1.10E-52 1.88E-24

GASMO 2.19E-32 6.58E-12

SAWSMO 0 0

17P

SMO -1.17E+03 -1.17E+03

SMOGA -1.17E+03 -1.17E+03
GASMO -1.16E+03 -1.10E+03

SAWSMO -1.17E+03 -1.17E+03

18P

SMO 1.51E+01 1.08E+02

SMOGA 1.50E+01 1.99E+02

GASMO 1.50E+01 1.32E+02

SAWSMO -1.28E+03 -1.16E+03

19P

SMO 3.51E-12 3.52E-12
SMOGA 3.51E-12 3.66E-12

GASMO 5.18E-12 8.10E-12

SAWSMO 3.51E-12 3.51E-12

20P

SMO 1.17E-12 6.56E-10

SMOGA 1.07E-07 4.78E-05

GASMO 3.98E-10 1.29E-08

SAWSMO 2.12E-12 8.18E-11

Table 3: The number of iteration for algorithm SAWSMO to

achieve the error 1E-6
Test Problem Maximum times Minimum times Average times

1P 143 128 135.1

2P 52 43 48.5

3P 172 159 166.8

4P 126 103 111.5

5P 98 91 95.1

6P 106 5 51.3

7P 1178 899 1036.2

11P 23 17 20.5

13P 672 618 639.7

16P 122 114 118.3

19P 9 1 5.3

20P 1412 1158 1287.4

It can be known from Table 2 that, for 12 benchmark

problems, the errors between the best function value obtained

by algorithm SAWSMO and the theoretical optimal value are

lower than 1E-6. Setting the termination condition to be either

the error 1E-6 of objective function value achieved or

maximum iteration number 2000 reached, we counted up the

maximum, minimum and average iteration times of the

algorithm SAWSMO to solve the above 12 benchmark

problems 30 times independently. The statistics results are

shown in Table 3.

It can be seen from Table 3 that, the algorithm SAWSMO can

achieve the specified accuracy 1E-6 of objective function

value within the maximum iteration number 2000 for all 12

benchmark problems. The maximum, minimum and average

iteration times for 4 problems (
1P ,

3P ,
4P ,

16P) are all within

200, and the maximum, minimum and average iteration times

for 3 problems (
2P ,

5P ,
11P) are within 100, the minimum

iteration times for problem
6P is 5. For the problem

19f , the

maximum, minimum and average iteration times are within

10, and the minimum iteration times is only 1. These results

show that the proposed algorithm SAWSMO improves the

convergence speed of the algorithm SMO to a certain extent.

5. Application in Classical Engineering Design

Problems

This section further verifies the performance and efficiency of

the algorithm SAWSMO by solving two real engineering

design problems: pressure vessel design and

tension/compression spring design. These problems were

widely discussed in the literature and have been solved to

better clarify the effectiveness of the algorithms. These

engineering design problems can be described as the

optimization problem with constraints. The constrained

optimization problems are converted into a series of

unconstrained optimization problems by the penalty function

method. Then, the proposed algorithm SAWSMO is

employed to solve the converted unconstrained optimization

problems. In algorithm SAWSMO, the population size N is

30, GlobalLeaderLimit is 30, LocalLeaderLimit is *N D ,

where D is the dimension of problem, the maximum number

43

Journal of Innovation and Social Science Research ISSN: 2591-6890

www.jissr.net

 Volume 8 Issue 12, 2021

of group is 5 and pr is the same as the previous numerical

experiments.

5.1 Pressure Vessel Design Problem

The pressure vessel is composed of a thick cylindrical shell

and a hemispherical body with thickness on both sides. The

goal of the pressure vessel design problem is to minimize the

cost of fabrication, including material, forming and welding

costs[14]. There are four variables in this problem: the

thickness of the shell(
sT), the thickness of the head(

hT), the

inner radius(R) and the length of the cylindrical shell(L), as

shown in Figure 2[15]. They are called
1x ,

2x ,
3x and

4x respectively. The mathematical formulation of the pressure

vessel design problem can be described as follows[15].

2 2 2

1 3 4 2 3 1 4 1 3

1 1 3

2 2 3

2 3

3 3 4 3

4 4

min () 0.6224 1.7781 3.1661 19.84

. . () 0.0193 0

 () 0.00954 0

4
 () 1296000 0

3

 () 240 0

f x x x x x x x x x x

s t g x x x

g x x x

g x x x x

g x x

 

   

   

   

    

  

1 2 3 4

0 99, 0 99, 10 200, 10 200x x x x       

 (10)

The algorithm SAWSMO is applied to solve the pressure

vessel design problem and compared with other 17

optimization algorithms which were reported in previews

works as shown in Table 4. It can be seen from Table 4 that,

with respect to the 17 comparison algorithms, the proposed

algorithm SAWSMO provides a better design scheme for the

pressure vessel design problem.

Figure 2: Pressure vessel design.

Figure 3: Tension/compression spring design

5.2 Tension/compression Spring Design Problem

The objective of the tension/compression spring design

problem is to reduce the weight of tension/compression spring

by determining the optimal value of three variables: the wire

diameter
1()d x , the mean coil diameter

2()D x and the

number of active coils
3()N x , as shown in Figure 3[15]. The

mathematical expression of the problem is as follows[15].

2

3 2 1

3

2 3

1 4

1

2

2 1 2

2 3 4 2

2 1 1 1

1

3 2

2 3

2 1

4

min () (2)

. . () 1 0
71785

4 1
 () 1 0

12566() 5108

140.45
 () 1 0

 () 1 0
1.5

0.05

f x x x x

x x
s t g x

x

x x x
g x

x x x x

x
g x

x x

x x
g x

 

  


   



  


  

 1 2 32.0, 0.25 x 1.3, 2.0 15.0x x    

(11)

Table 4: Comparison of the best value for pressure vessel design problem

Algorithm
Design variables

Best cost
sT

hT R L

GSA[16] 1.125 0.625 55.9886598 84.4542025 8538.8359
Branch-bound[17] 1.125 0.625 48.97 106.72 7982.5

Lagrangian multiplier[18] 1.125 0.625 58.291 43.690 7198.200

CPSO[14] 0.8125 0.4375 42.091266 176.7465 6061.0777
MVO[19] 0.8125 0.4375 42.090738 176.73869 6061.8066

GA[20] 0.81250 0.43750 42.097398 176.65405 6059.94634

ES[21] 0.8125 0.4375 42.098087 176.640518 6059.74560

WOA[22] 0.812500 0.437500 42.0982699 176.638998 6059.7410

CSCA[23] 0.8125 0.4375 42.098411 176.63769 6059.7340

ACO[24] 0.812500 0.437500 42.098353 176.637751 6059.7258
HPSO[14] 0.8125 0.4375 42.0984 176.6366 6059.7143

PSO-SCA[25] 0.8125 0.4375 42.098446 176.6366 6059.71433

AFA[26] 0.8125 0.4375 42.0984 176.6366 6059.7143
SMO[15] 0.778785 0.384684 40.32225 200 5890.337

MBA[27] 0.7802 0.3856 40.4292 198.4964 5889.3216

TEO[28] 0.779151 0.385296 40.369858 199.301899 5887.51107
SMONM[15] 0.778322 0.384725 40.3275957 199.8889 5885.595

SAWSMO 0.778169 0.384649 40.319654 200 5885.344737

44

Journal of Innovation and Social Science Research ISSN: 2591-6890

www.jissr.net

 Volume 8 Issue 12, 2021

Table 5 is the optimization results obtained by the proposed

algorithm SAWSMO for this problem, which are compared

with other 15 optimization algorithms that were respect

preciously. It can be seen from Table 5 that, with respected to

the 15 comparison algorithms, the proposed algorithm

SAWSMO made better results for tension/compression spring

design problem.

Table 5: Comparison of the beast value for

Tension/compression on spring design problem

Algorithm
Design variables

Best value
d D N

Ray-Saini

method[29]
0.321532 0.050417 13.979915 0.013060

MVO 0.05251 0.37602 10.33513 0.012790
Belegundu-Arora

method[30]
0.0500 0.3177 14.026 0.012730

GA[31] 0.051480 0.351661 11.632201 0.01270478
GSA 0.050276 0.323680 13.525410 0.0127022

ES 0.051643 0.355360 11.397926 0.012698

SMO 0.052818 0.384478 9.82953 0.012688
RO[24] 0.051370 0.349096 11.76279 0.0136788

WOA 0.051207 0.345215 12.004032 0.0126763

CSCA 0.051609 0.354714 11.410831 0.0126702
IGWO[32] 0.051701 0.356983 11.2756 0.012667

ISCA[33] 0.0520217 0.364768 10.8323 0.012667
SMONM 0.051918 0.362248 10.97194 0.012666

SC-PSO[34] 0.051583 0.354190 11.438675 0.012665

EEGWO[35] 0.051673 0.35634 11.3113 0.012665

SAWSMO 0.0517380 0.3579292 11.2158455 0.0126632

6. Conclusion

In this paper, a modified spider monkey optimization

algorithm based on self-adaptive inertia weight is proposed.

Inspired by particle swarm optimization algorithm, the

adaptive inertia weight is integrated into position update

formula in the local leader phase where each spider monkey

has the opportunity to update its own position. As the degree

of self-learning is different according to the objective function

values of different spider monkeys, the adaptive inertia

weight is used to make the spider monkey use its own

experience better. The numerical results on 20 benchmark

problems show that, compare to the original spider monkey

optimization algorithm and the hybrid algorithms SMOGA

and GASMO, the modified spider monkey optimization

algorithm based on self-adaptive inertia weight has a certain

improvement in convergence accuracy and speed. The

proposed algorithm SAWSMO can provide better design

schemes when it is applied in two classical engineering design

problems. It can be further studied in the future.

Acknowledgments

This work was supported in part by the National Key

Research Program of China under Grant 2016YFC0700601,

in part by the Science and Technology Foundation of Guizhou

Province ([2020]1Y012), in part by the Innovation Groups

Projects of Education Department of Guizhou Province under

Grant No. KY[2021]015, in part by the Central Support Local

Projects under Grant PXM 2013_014210_000173, in part by

the Fundamental Research Funds for Beijing University of

Civil Engineering and Architecture under Grant X18193, and

in part by the BUCEA Post Graduate Innovation Project under

Grant PG2021100. And in part by the graduate education and

teaching quality improvement project of Beijing University of

Civil Engineering and Architecture (J2021014).

References

[1] A. Sharma, N. Sharma, H. Sharma, J. Chand Bansal,

Exponential Adaptive Strategy in Spider Monkey

Optimization Algorithm, Springer Singapore, 2020.

[2] D.E. Goldberg, J.H. Holland, Genetic algorithms and

machine learning, Mach. Learn. 3 (1988) 95-99.

https://doi.org/10.1007/bf00113892.

[3] S. Rainer, P. Kenneth, Differential evolution-a simple

and efficient heuristic for global optimization over

continuous spaces, J. Glob. Optim. 11 (1997) 341-359.

[4] J. Kennedy, R. Eberhart, Particle Swarm Optimization,

Proc. ICNN’95-I-nternational Conf. Neural Networks. 4

(1995) 1942-1948.

[5] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey Wolf

Optimizer, Adv. Eng. Softw. 69 (2014) 46-61.

[6] D. Karaboga, An idea based on honey bee swarm for

numerical optimization, Kayseri Computer Eng. Dep.

Eng. Fac. Erciyes Univ. (2005).

[7] J.C. Bansal, H. Sharma, S.S. Jadon, M. Clerc, Spider

Monkey Optimization algorithm for numerical

optimization, Memetic Comput. 6 (2014) 31-47.

[8] S. Kumar, V.K. Sharma, R. Kumari, Self-Adaptive

Spider Monkey Optimization Algorithm for Engineering

Optimization Problems, Int. J. Information, Commun.

Comput. Technol. 2 (2015) 96-107.

[9] K. Gupta, K. Deep, J.C. Bansal, Improving the Local

Search Ability of Spider Monkey Optimization

Algorithm Using Quadratic Approximation for

Unconstrained Optimization, Comput. Intell. 33 (2017)

210-240.

[10] A. Agrawal, P. Farswan, V. Agrawal, D.C. Tiwari, J.C.

Bansal, On the hybridization of spider monkey

optimization and genetic algorithms, Adv. Intell. Syst.

Comput. 546 (2017) 185-196.

[11] A. A. Al-Azza, A. A. Al-Jodah, F. J. Harackiewicz,

Spider Monkey Optimization (SMO): A Novel

Optimization Technique in Electromagnetics, 2016

IEEE Radio Wirel. Symp. (2016) 238-240.

[12] A.F. Ali, An improved spider monkey optimization for

solving a convex economic dis-patch problem, Model.

Optim. Sci. Technol. 10 (2017) 425-448.

[13] N. Sharma, A. Bhargava, A. Sharma, H. Sharma,

Optimal design of PIDA controller for induction motor

using Spider Monkey Optimization algorithm, Int. J.

Metaheuristics. 5 (2016) 278.

[14] Q. He, L. Wang, An effective co-evolutionary particle

swarm optimization for constrain-ed engineering design

problems, Eng. Appl. Artif. Intell. 20 (2007) 89-99.

[15] P.R. Singh, M.A. Elaziz, S. Xiong, Modified Spider

Monkey Optimization based on Nelder-Mead method

for global optimization, Expert Syst. Appl. 110 (2018)

264-289.

[16] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA?: A

Gravitational Search Algorithm, Inf. Sci. (Ny). 179

(2009) 2232-2248.

[17] E. Sandgren, Nonlinear integer and discrete

programming in mechanical design optimization, J.

Mech. Des. Trans. ASME. 112 (1990) 223-229.

[18] B.K. Kannan, S.N. Kramer, An augmented LaGrange

multiplier based method for mixed integer discrete

continuous optimization and its applications to

45

Journal of Innovation and Social Science Research ISSN: 2591-6890

www.jissr.net

 Volume 8 Issue 12, 2021

mechanical design, J. Mech. Des. Trans. ASME. 116

(1994) 405-411.

[19] S. Mirjalili, S.M. Mirjalili, A. Hatamlou, Multi-Verse

Optimizer?: a nature-inspired algorithm for global

optimization, Neural Comput. Appl. 27 (2016) 495-513.

[20] C.A.C. Coello, E.M. Montes, Constraint-handling in

genetic algorithms through the use of dominance-based

tournament selection, Adv. Eng. Informatics. 16 (2002)

193-203.

[21] E. Mezura-montes, A.C. Coello Coello, An empirical

study about the usefulness of evolution strategies to

solve constrained optimization problems, Int. J. Gen.

Syst. 37 (2008) 443-473.

[22] S. Mirjalili, A. Lewis, The Whale Optimization

Algorithm, Adv. Eng. Softw. 95 (2016) 51-67.

[23] F.Z. Huang, L. Wang, Q. He, An effective

co-evolutionary differential evolution for constrained

optimization, Appl. Math. Comput. 186 (2007) 340-356.

https://doi.org/10.1016/j.amc.2006.07.105.

[24] A. Kaveh, S. Talatahari, An improved ant colony

optimization for constrained engineering design

problems, Eng. Comput. 27 (2010) 155-182.

[25] H. Liu, Z. Cai, Y. Wang, Hybridizing particle swarm

optimization with differential evolution for constrained

numerical and engineering optimization, Appl. Soft

Comput. J. 10 (2010) 629-640.

[26] A. Baykaso, F.B. Ozsoydan, Adaptive firefly algorithm

with chaos for mechanical design optimization problems,

Appl. Soft Comput. J. 36 (2015) 152-164.

[27] A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi,

Mine blast algorithm: A new population based algorithm

for solving constrained engineering optimization

problems, Appl. Soft Comput. J. 13 (2012) 2592-2612.

[28] A. Kaveh, A. Dadras, A novel meta-heuristic

optimization algorithm: Thermal exchange optimization,

Adv. Eng. Softw. 110 (2017) 69-84.

[29] T. Ray, P. Saini, Engineering design optimization using

a swarm with an intelligent information sharing among

individuals, Eng. Optim. 33 (2001) 735-748.

[30] A. D.Belegundu, J. S.Arora, A study of mathematical

programming methods for structural optimization. Part

I?: Theory, Int. J. Numer. Methods Eng. 21 (1985)

1583-1599.

[31] A.C. Coello Coello, Use of a self-adaptive penalty

approach for engineering optimization problems,

Comput. Ind. 41 (2000) 113-127.

[32] W. Long, J. Jiao, X. Liang, M. Tang, Inspired grey wolf

optimizer for solving large scale function optimization

problems, Appl. Math. Model. 60 (2018) 112-126.

[33] W. Long, T. Wu, X. Liang, S. Xu, Solving

high-dimensional global optimization problems using an

improved sine cosine algorithm, Expert Syst. Appl. 123

(2019) 108-126.

[34] L.C. Cagnina, S.C. Esquivel, U. Nacional, D.S. Luis, S.

Luis, A.C. Coello Coello, Solving Engineering

Optimization Problems with the Simple Constrained

Particle Swarm Optimizer. 32 (2008) 319-326.

[35] W. Long, J. Jiao, X. Liang, M. Tang, An

exploration-enhanced grey wolf optimizer to solve

high-dimensional numerical optimization, Eng. Appl.

Artif. Intell. 68 (2018) 63-80.

46

